(503) 419-7505 info@modernvital.com
What Exactly Does Food Intolerance Mean?

What Exactly Does Food Intolerance Mean?

Food intolerance is different than food allergy. Food intolerance is a non-specific, non-immune mediated reaction to specific foods.

According to one’s individual biochemistry and digestion, the digestive tract’s intestinal lining doesn’t recognize certain foods as nutritive, but rather as toxic or indigestible, responding with symptoms such as gas, bloating, abdominal pain, diarrhea, constipation, and many others. This also may be due to an enzyme deficiency.

Food intolerance is easily confused by the lay public with food allergies, which are immunologic in nature.

Food allergy can be potentially life threatening, inducing such reactions as anaphylactic shock, whereas food intolerances usually produce more chronic, in the background, low lying states

of inflammation. Food intolerance has to do with the body’s ability to sufficiently metabolize, digest, and absorb the nutrients from certain foods.

Though food intolerance is not immune mediated, the resulting inflammation is an immune response, characterized clinically by redness (rubor), heat (calor), swelling (tumor), and pain (dolor).

According to naturopathic doctors, inflammation is actually a compensatory, protective response on the part of the organism to reestablish normal balance in structure and function, to ward off “the bad guys,” or to resolve the underlying mechanisms or causes of the disease/state/condition.

The inflammatory response, in other words, is part of the body’s attempt to heal itself, and so should not be suppressed but rather worked with and supported. Unless, of course, a much more serious condition is at hand, such as the anaphylactic shock or severe IgE- mediated food allergy.

The dietary food intolerance evaluation is not a food allergy test or a lab, which classically measure IgG and IgE antibody titers that serve as biomarkers of the level of one’s individual response to certain foods as antigenic compounds.

In fact, this food intolerance assessment is a naturopathic, diagnostic tool, or rather, a functional evaluation that is evaluating the body’s ability to break down and absorb certain foods.

The foods listed above, in your results report, will likely irritate your intestinal lining and lead to symptoms of inflammation downstream, due to higher levels of toxicity in the blood (“toxemia”). These symptoms will be unique to each individual.

The only way to truly know how the foods listed below affect your digestive system is to remove them from your diet for a time. Knowledge empowers, and health is a journey, not a destination.

This information empowers you with more knowledge about what makes your body move in the direction of health and what makes it go against the trajectory- it’s up to you to determine what you want to do with it.

 

Two Reasons Dairy Could Be Driving Your Inflammation

Two Reasons Dairy Could Be Driving Your Inflammation

Dairy sensitivity is a commonly reported and documented ailment and complaint with symptoms including bloating and diarrhea, gas, indigestion, cramps, nasal congestion and heartburn, and just feeling off. (1)

Globally, dairy intolerance is the most common food intolerance in the world, said to be mainly due to lactose, the sugar found in milk, and shown to affect as much as 68% of the global population. (2) Dairy allergy, on the other hand, which has nothing to do with lactose, is especially common in children and infants, being an IgE-mediated, that is an allergenic and immunogenic reaction to cow’s milk. (3

Though it is widely acknowledged and accepted that dairy can cause a host of health complaints, it is not commonly known why this might be. Of course, it depends, to some degree, on the health and epigenetics of the individual and the environment to which their bodies and genes are exposed, but this article will discuss two biochemical reasons that dairy may be driving your inflammation. 

Reason #1: The Structure of Dairy Carbohydrates

One reason that dairy may be challenging to our health is based on the biochemistry of dairy carbohydrates. If you took biochemistry in school, you may recall that the structure of lactose bonds are composed of one molecule of D-galactose and one molecule of D-glucose linked by a beta-1,4-glycosidic bond (to form a single molecule), a bond which can only be broken with the enzyme lactase. (4)

Lactose is a disaccharide, meaning it’s composed of two sugars, and when the enzyme lactase cleaves the bond catalytically by acid hydrolysis, then you have two monosaccharides (a fancy word for a single molecule of sugar): galactose and glucose.

In other words, lactase converts a double molecule of sugar, lactose, to two single molecules, galactose and glucose. And without lactase, we cannot break down the lactose in dairy products. (5)

Grass-Fed Cows and Cellulose

We know that grass is what cows mainly eat, and grass is made up of a carbohydrate called cellulose. Fascinatingly, cellulose contains these same beta-1,4-glycosidic bonds but cellulose is indigestible to humans because of these bonds. (6)

Cellulose is composed of glucose monomers linked in unbranched chains joined by these bonds in a linear, fibrous structure. Unfortunately, humans don’t have any cellulase, which is made by bacteria in cows’ guts, to break down cellulose. 

Humans also don’t have four stomachs, like these ruminants, either: a rumen, reticulum, omasum, and abomasum. (7) Looking closely, the lactase-specific bond of lactose is similar in structure to the bonds in cellulose.

Reason #2: The Structure of Dairy Proteins

Out of the 12 most common genetic variants of cow, A1 and A2 are by far the most common. But they are both different in the single nucleotide polymorphisms in their dairy proteins (SNPs). There is something called the A1/A2 milk hypothesis. (8)

A little known fact is that A1 cows in the United States contain a histidine residue in the beta casein protein in their amino acid structure. Histidine is a precursor building block to histamine, which makes the symptoms of allergy much more likely. In other words, if your body has a bunch of histidine onboard, it might just go to town making histamine molecules. However, there is evidence that this isn’t the main reason that A1 cow milk consumption is associated with more problems. (9, 10)

Have you ever traveled over to Europe and eaten a ton of dairy, and noticed that you reacted much less severely to those foods? Or maybe you heard this story from a friend or family member, and found it to be curious? Well, here’s a possible reason why: 

The cows in Europe are mostly A2 cows, which produce dairy compounds that contain a proline residue, instead of histidine. In other words, from a biochemical perspective, the dairy of A2 cows in Europe are significantly more potentially hypoallergenic than the dairy of A1 cows in the US.

It has also been found that under normal digestive circumstances, an opiate-like protein called BCM-7 is released from A1 milk, however, not from A2 milk. This opiate-like protein appears to play a role in slowing gastric emptying and transit times, a well known side effect of opiate substances. It is not yet known to what degree this produces direct or indirect inflammatory responses. (11)

Conclusion

In summary, the problems that ensue for many when consuming dairy may be in part due to the biochemical conformation of carbohydrates and proteins and what our body is able to do or not do with them or in response to them. 

In other words, because the linkages in dairy carbohydrates are the same shape as the indigestible linkages in cellulose, dairy may to some degree be perceived by our bodies as grass-like in nature. 

Secondly, the histidine amino acid residues particularly prevalent in A1 cows which make up the majority of dairy products in the United States may lead to more histamine, and also to have opiate-like effects on the gastrointestinal tract which indirectly lead to inflammation.

If this is something you’re experiencing, or other food intolerances, remember to consult your naturopathic doctor, or your integrative medicine practitioner, regarding the role they may be playing in your life.

Resources

  1. Mishkin S. Dairy sensitivity, lactose malabsorption, and elimination diets in inflammatory bowel disease. Am J Clin Nutr. 1997 Feb;65(2):564-7. doi: 10.1093/ajcn/65.2.564. PMID: 9022546.
  2. Definition & facts for lactose intolerance. (2018, February 01). Retrieved March 10, 2021, from https://www.niddk.nih.gov/health-information/digestive-diseases/lactose-intolerance/definition-facts
  3. Flom JD, Sicherer SH. Epidemiology of Cow’s Milk AllergyNutrients. 2019;11(5):1051. Published 2019 May 10. doi:10.3390/nu11051051
  4. Study.com. (n.d.). Retrieved March 10, 2021, from https://study.com/academy/lesson/lactose-intolerance-and-the-major-disaccharides-definition-structure-examples.html
  5. Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptableAm J Clin Nutr. 2019;110(2):273-279. doi:10.1093/ajcn/nqz104
  6. Turning waste into food: Cellulose digestion. (n.d.). Retrieved March 10, 2021, from https://sites.dartmouth.edu/dujs/2011/02/03/turning-waste-into-food-cellulose-digestion/
  7. Digestive physiology of the cow. (n.d.). Retrieved March 10, 2021, from http://www.milkproduction.com/Library/Scientific-articles/Animal-health/Digestive-Physiology-of-the-Cow/#:~:text=The%20cow%20is%20a%20ruminant,omasum%3B%20and
  8. Sodhi M, Mukesh M, Kataria RS, Mishra BP, Joshii BK. Milk proteins and human health: A1/A2 milk hypothesisIndian J Endocrinol Metab. 2012;16(5):856. doi:10.4103/2230-8210.100685
  9. Truswell, A. S. (2005). The a2 milk case: A critical review. European Journal of Clinical Nutrition, 59(5), 623-631. doi:10.1038/sj.ejcn.1602104
  10. Brooke-Taylor S, Dwyer K, Woodford K, Kost N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-CaseinAdv Nutr. 2017;8(5):739-748. Published 2017 Sep 15. doi:10.3945/an.116.013953
  11. Kamiński S, Cieslińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet. 2007;48(3):189-98. doi: 10.1007/BF03195213. PMID: 17666771.

A Natural Evidence-Based Approach to Allergies While Seeking the Root Cause

A Natural Evidence-Based Approach to Allergies While Seeking the Root Cause

Allergies arise when our immune system overreacts to what it perceives to be foreign intruders (allergens). The symptoms of allergies can range from mild to severe, and triggers include pollen, dust mites, pet and farm animal dander, insect bites and stings, mold, and even potentially medications.

Sometimes referred to as hypersensitivities, allergic reactions usually involve the skin, airways, and mucous membranes. This article will discuss some natural, evidence-based approaches to the treatment of allergies while working with a naturopathic doctor or other integrative medicine practitioner, such as a functional medicine doctor, in order to identify their underlying root causes.

The Role of Mast Cells in Allergy and Inflammation

Mast cells are a type of white blood cell rich in histamine granules famous for playing a significant role in causing the symptoms of allergy. (1) Mast cells live near blood vessels, releasing potent mediators of allergy and inflammation when activated.

When these cells degranulate, they can cause an allergic, inflammatory reaction characterized by redness, swelling, heat, and pain in the area of infection or trauma. (2)

Mast Cell Dysfunction and Histamine Intolerance

Mast cell dysfunction, and a related disorder, histamine intolerance, are implicated in many allergic and inflammatory conditions. But a discussion of these conditions in detail is best saved for another time.

Recent studies have shown how mast cells are critical to both arms of our immune system, the innate as well as the adaptive. (3)

But a root-cause approach begs the question: What is causing my symptoms of allergy? 

There are many answers to this question, such as food intolerance, the epigenetics of histamine intolerance, and a dysregulated HPA axis, but while a root-cause approach is being taken, it may be necessary to help stabilize the degranulation of these mast cells and their release of histamine without having to resort to the chronic use of conventional antihistamines, such as Zyrtec.

One naturopathic way to stabilize mast cells is by combining bioflavonoids, vitamin C, and bromelain.

The Anti-Inflammatory and Anti-Allergic Effects of Bioflavonoids

Inflammation plays a key role in allergy and asthma. Increasing scientific research points to the evidence of phenolic compounds, such as flavonoids, which exert an anti-inflammatory effect. (4)

Not only can flavonoids combat the mediators of allergy, but they also possess strong antioxidant properties. Numerous studies have shown that flavonoids can inhibit the onset as well as the development of chronic inflammatory disease. 

Flavonoids are rich in fruits, vegetables, and even legumes and cocoa.Bioflavonoids, on the other hand, are the most abundant type of polyphenol found in our diet. A famous polyphenol often found in natural antihistamine supplements is quercetin, a plant pigment found in red wine, berries, onions, apples, and even green tea. Also, because letting thy food be thy medicine is always a good thing, a person will benefit from incorporating diverse, polyphenol-rich foods into their diet whenever possible.

The Immune Enhances and Antioxidant Effects of Vitamin C

Our immune systems are highly complex and regulated by groups of immune cells, and as mentioned these cells can overreact when they perceive foreign substances, known as allergens.

Though its precise, multifactorial  mechanisms are still poorly understood, vitamin C has been shown to be an essential component in the management of allergic diseases. Chemical mediators in immediate hypersensitivity reactions are affected by the presence of ascorbic acid, as it has been shown to chelate with calcium and may control the release of mediators such as histamine. (5)

Vitamin C is also an antioxidant and can act as a free radical scavenger. Antimicrobial and natural killer cell activities are enhanced by Vitamin C. Vitamin C deficiency has been correlated with high levels of histamine in the blood, which is dangerous because high histamine, or histaminemia, has been shown to damage endothelial-dependent vasodilation. And because vasodilation lowers blood pressure and heart rate, this could easily lead to high blood pressure. (6, 7, 8)

The Anti-Inflammatory and Anti-Allergic Effects of Bromelain

Bromelain is a natural enzyme extracted from pineapple core and juice shown to have anti-inflammatory and anti-allergy activities, and shown (in mouse studies) to reduce the progression of allergic airway disease. This suggests that allergic sensitivity can be reduced. (9, 10)

Bioflavonoids, Vitamin C, and Bromelain in The Treatment of Mast Cell Dysfunction

In summary, while teasing out the root cause of allergic sensitivity with a naturopathic doctor or another integrative medicine practitioner, research indicates that the combination of bioflavonoids, Vitamin C, and bromelain can help stabilize mast cell degranulation. 

Of course, you should always consult your doctor first.

 

Resources

  1. da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014 Oct;62(10):698-738. doi: 10.1369/0022155414545334. Epub 2014 Jul 25. PMID: 25062998; PMCID: PMC4230976.
  2. Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr. 2017 Dec;11 Suppl 2:S1001-S1007. doi: 10.1016/j.dsx.2017.07.029. Epub 2017 Jul 23. PMID: 28778429.
  3. Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol. 2016 May 5;778:158-68. doi: 10.1016/j.ejphar.2015.05.071. Epub 2015 Jun 27. PMID: 26130122.
  4. Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019 Nov 30;299:125124. doi: 10.1016/j.foodchem.2019.125124. Epub 2019 Jul 3. PMID: 31288163.
  5. Anogeianaki A, Castellani ML, Tripodi D, Toniato E, De Lutiis MA, Conti F, Felaco P, Fulcheri M, Theoharides TC, Galzio R, Caraffa A, Antinolfi P, Cuccurullo C, Ciampoli C, Felaco M, Cerulli G, Pandolfi F, Sabatino G, Neri G, Shaik-Dasthagirisaheb YB. Vitamins and mast cells. Int J Immunopathol Pharmacol. 2010 Oct-Dec;23(4):991-6. doi: 10.1177/039463201002300403. PMID: 21244748.
  6. Sharma SC, Wilson CW. The celluar interaction of ascorbic acid with histamine, cyclic nucleotides and prostaglandins in the immediate hypersensitivity reaction. Int J Vitam Nutr Res. 1980;50(2):163-70. PMID: 6156921.
  7. Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, Saggini A, Caraffa A, Antinolfi P, Tete’ S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Speranza L, Pantalone A, Saggini R, Tei M, Speziali A, Conti P, Theoharides TC, Pandolfi F. Role of vitamins D, E and C in immunity and inflammation. J Biol Regul Homeost Agents. 2013 Apr-Jun;27(2):291-5. PMID: 23830380.
  8. BD, Y. (1970, January 01). Relationship between Vitamin C, Mast Cells and Inflammation. Retrieved February 01, 2021, from https://www.mendeley.com/catalogue/115cbf0e-8fb8-3bee-a492-f2a8bbb22135/
  9. Secor ER Jr, Carson WF 4th, Cloutier MM, Guernsey LA, Schramm CM, Wu CA, Thrall RS. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol. 2005 Sep;237(1):68-75. doi: 10.1016/j.cellimm.2005.10.002. Epub 2005 Dec 6. PMID: 16337164; PMCID: PMC2576519.
  10. Owoyele BV, Bakare AO, Ologe MO. Bromelain: A Review on its Potential as a Therapy for the Management of Covid-19. Niger J Physiol Sci. 2020 Jun 30;35(1):10-19. PMID: 33084621.