by Dr. Ben Reebs | Jul 9, 2018 | Health, Hormones, Stress
Studies show that cortisol, your body’s stress hormone, increases thyroid-stimulating hormone (TSH), (1,2) as well as inhibits the conversion of T4 to T3, which is your body’s metabolically active thyroid hormone (3,4). This process mostly occurs peripherally in the liver, GI tract, skeletal muscle, but also occurs in the thyroid and even the brain itself. However, we need more studies verifying exactly how elevated cortisol levels mechanistically inhibits T4-to-T3 conversion.
Thyroid hormone acts to regulate metabolism by increasing basal metabolic rate, temperature, and heart rate/cardiac output. This, in part, explains why chronic stress can easily lead to hypothyroidism, because cortisol is literally turning off your metabolism. (5)
But why would cortisol inhibit T3 from being formed? Because T3 requires a lot of energy or ATP, to get stuff done in the body, and when the body is stressed, it needs to conserve energy so that it can act out of fight or flight.
Cortisol Is Increased by Stress and Hypoglycemia
There are two main stimuli (6) that lead to the release of cortisol from the zona fasciculata of your adrenal glands:
- Stress
- Hypoglycemia
What this basically means is that when your blood sugars are low, a stress response is mimicked in your body.
Relaxation (A Destressed State) and Hyperglycemia Inhibit Cortisol
So what inhibits cortisol? You guessed it:
- Not being stressed
- Hyperglycemia (having blood sugar that is too high)
Stress Can Be Physical or Psychological
Stress is a complex phenomenon which can be physical or psychological. Some examples of stressful events which are physical in nature include trauma, infection, or exercise. We already mentioned hypoglycemia. Psychological examples of stress include fear, bereavement, or anger.
Cortisol is Permissive
Did you know that cortisol is the only hormone in the body that has receptors on almost every cell. It must be pretty important then. And that’s why it goes everywhere, having no particular affinity for anything. There’s a word for this in science: Permissive. (7) When you’re superstressed, all of these cortisol receptors get upregulated, increasing cellular sensitivity. And there is no cellular second messenger, in case you were wondering. The message of cortisol is loud and direct.
The Role of Cortisol
But what does cortisol do in the body? Well, two things, mainly, physiologically:
- Proteolysis and Gluconeogenesis: Cortisol breaks down proteins, a process called proteolysis, so that the amino acids can be used to make glucose (gluconeogenesis). Remember, the body is in a state of hypoglycemia.
- Stress Lowers Your Immune System: Cortisol wields profound anti-inflammatory effect across the body. Cortisol destroys white blood cells, such as T-cells and eosinophils. Cortisol inhibits the migration of pathogen-engulfing, debris-cleaning macrophages. Cortisol stabilizes mast cells, who can be quite annoying when they unload histamine, as in Type 1 hypersensitivity reactions, such as seasonal allergies.
Cortisol also inhibits an enzyme called phospholipase, which is responsible for making prostaglandins by cleaving the phospholipid bilayer in the cell’s membranes and releasing arachidonic acid, which signals the body to make a host of important inflammatory molecules required by the immune system to do its job. (8) Remind you of the effects of steroids, by chance? Well, that’s because cortisol is an endogenous steroid.
Immunosuppression
Too much cortisol can lead to immunosuppression. (9) And when your immune system is down, that’s when you get sick. Ever get done with school finals for the term, only to be sick during your week off? Well, this is why.
When you experience a stressful event, such as an important exam, a romantic breakup, or a fender-bender, a cascade of hormones (10) are released in the engine of your body over approximately twenty-four hours.
The Cascade of Stress Hormones
- Epinephrine: First and immediately after the stressful event, epinephrine, aka adrenaline, is released. Epinephrine increases heart rate, raises blood sugar, and boost sugar metabolism.
- Glucagon: After about 20 minutes, glucagon is released from the alpha cells of the pancreas, causing blood sugar to be raised, as well as glycogen to be broken down (glycogenolysis), fats to be broken down (lipolysis), and ketones to be made (ketogenesis). Glucagon acts on the adrenal cortex, as well as the liver and adipose tissue.
- Cortisol: Within about 2 to 4 hours, cortisol is released.
- Growth Hormone: Then, after about 24 hours, growth hormone (GH) is released. This is one reason that high intensity interval trainings (HIIT), such as CrossFit, is effective for muscle growth, which doesn’t occur until one gets good sleep and after a couple days, because workouts are fast-paced and stressful. GH raises glucose levels and breaks down fat, releasing free fatty acids, produced by the anterior pituitary when we sleep. This is why a good night’s sleep is critical to get the benefits of HIIT.
- Insulin: Here’s one thing that’s a bit counterintuitive. Almost every metabolic process in the body is biphasic, balanced and counterbalanced by opposing regulatory feedback mechanisms. The hormones mentioned above will produce glucose in the body, which will increase the osmolarity of the blood. But after about 30 minutes, the body will release insulin, in order to push the excess glucose into the cells so that it can be used.
- Antidiuretic Hormone (ADH): After about 30 minutes, the body will also produce antidiuretic hormone (ADH), in order to normalize the blood osmolarity by retaining fluid volume rather than diuresing (a fancy word for urinating).
- Aldosterone: Cortisol works alongside the hormone aldosterone, as well, to increase sodium reabsorption in the kidneys, so that electrolyte and hydration status are appropriately maintained. As at least half of our blood is water, proper blood perfusion can occur in the body during fight or flight.
Conclusion
Cortisol, your body’s stress hormone, inhibits the conversion of T4 to T3, that is, your body’s metabolically active thyroid hormone.
If high cortisol levels are chronic, this can lead to hypothyroidism. Cortisol is the body’s endogenous corticosteroid, suppressing the immune system. Chronic stress can lead to frequently getting sick.
Resources:
- Walter KN, Corwin EJ, Ulbrecht J, et al. Elevated thyroid stimulating hormone is associated with elevated cortisol in healthy young men and women. Thyroid Research. 2012;5(1):13. doi:10.1186/1756-6614-5-13.
- Hage MP, Azar ST. The Link between Thyroid Function and Depression. Journal of Thyroid Research. 2012;2012:1-8. doi:10.1155/2012/590648.
- Szivak TK, Lee EC, Saenz C, et al. Adrenal Stress and Physical Performance During Military Survival Training. Aerospace Medicine and Human Performance. 2018;89(2):99-107. doi:10.3357/amhp.4831.2018.
- Kahana L, Keidar S, Sheinfeld M, Palant A. Endogenous Cortisol And Thyroid Hormone Levels In Patients With Acute Myocardial Infarction. Clinical Endocrinology. 1983;19(1):131-139. doi:10.1111/j.1365-2265.1983.tb00751.x.
- Ranabir S, Reetu K. Stress and hormones. Indian Journal of Endocrinology and Metabolism. 2011;15(1):18. doi:10.4103/2230-8210.77573.
- Gandhi K. Approach to hypoglycemia in infants and children. Translational Pediatrics. 2017;6(4):408-420. doi:10.21037/tp.2017.10.05.
- Mavroudis PD, Corbett SA, Calvano SE, Androulakis IP. Circadian characteristics of permissive and suppressive effects of cortisol and their role in homeostasis and the acute inflammatory response. Mathematical Biosciences. 2015;260:54-64. doi:10.1016/j.mbs.2014.10.006.
- Goppelt-Struebe M, Wolter D, Resch K. Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclo-oxygenase/PGE isomerase. British Journal of Pharmacology. 1989;98(4):1287-1295. doi:10.1111/j.1476-5381.1989.tb12676.x.
- Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and Cellular Endocrinology. 2011;335(1):2-13. doi:10.1016/j.mce.2010.04.005.
- Tsigos C, Kyrou I, Kassi E, et al. Stress, Endocrine Physiology and Pathophysiology. [Updated 2016 Mar 10]. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278995/
by Dr. Ben Reebs | Jul 3, 2018 | Digestion, Health, Longevity
A growing body of research demonstrates an association between coffee drinking and a host of health benefits. Just this week, a new study showed premature death decreased by as much as 16% in those who consume 6 to 7 daily cups of coffee. (1) In 2017, the American Heart Association presented preliminary research showing a lowered risk of stroke and heart failure in coffee consumers (2), while decrease in risk of dementia, by as much as 65% in late age, has been well-established. (3,4)
Relying mainly on observational studies, there are many proposed mechanisms by which coffee may increase longevity and protect against cognitive decline, such as antioxidant capacity, increased insulin sensitivity, and the anti-inflammatory effects of blocking adenosine receptors in the brain. (5,6) This article will explore a potential mechanism which is little talked about, accounting for the gut-brain axis which links emotional and cognitive areas of the brain with intestinal functions.
Coffee Increases Gastric Acid (HCl) Secretion in the Gut
Coffee, both caffeinated and decaffeinated (7,8), increases the production of the hormone gastrin in the gut (9), the prime regulator of gastric acid (HCl) secretion. Specialized endocrine cells (G cells) release gastrin into circulation after a meal.
The G cells are tightly regulated by two hormones: gastrin releasing peptide (GRP), which exerts stimulatory effects in the gut and is countered by the inhibitory effects of somatostatin. The release of gastrin is controlled by a negative feedback loop whereby fasting and increased stomach acid will inhibit it and a high gastric pH will stimulate its secretion.
This may partially explain why long-term proton pump inhibitor (PPI) takers often have chronically elevated serum gastrin levels. PPIs inhibit the H+/K+-ATPase system found in gastric parietal cells, thereby suppressing gastrin levels, which will eventually cause the body to respond to stimulate the release of gastrin to maintain homeostasis.
The hormone gastrin increases stomach motility and gastric emptying. Nutrient absorption is only possible when stomach acid levels are at their proper levels. One study indicates that bitter taste signaling occurring in the gastric parietal cells plays a role in the release of gastrin. (10)
Coffee May Help Optimize Digestion and Nutrient Absorption, Especially as We Age
Low stomach acid (hypochlorhydria) is more common in the elderly (11). Is it possible that coffee’s life-lengthening health benefits are in part due to its effect on gastric parietal cells, helping to maintain optimal pH levels and a healthy microbiome, as well as optimize digestion and nutrient absorption. This may very well be the main reason that coffee consumption, no matter in what form, increases longevity. Unfortunately, more observational studies will not give us the answer.
- Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of Coffee Drinking With Mortality by Genetic Variation in Caffeine MetabolismFindings From the UK Biobank. JAMA Intern Med. Published online July 02, 2018. doi:10.1001/jamainternmed.2018.2425
- Drinking coffee may be associated with reduced risk of heart failure and stroke. Late-onset asthma linked to increased heart disease, stroke risk | American Heart Association. https://newsroom.heart.org/news/drinking-coffee-may-be-associated-with-reduced-risk-of-heart-failure-and-stroke. Accessed July 3, 2018.
- Santos C, Costa J, Santos J, Vaz-Carneiro A, Lunet N. Caffeine Intake and Dementia: Systematic Review and Meta-Analysis. Journal of Alzheimers Disease. 2010;20(s1). doi:10.3233/jad-2010-091387.
- Panza F, Solfrizzi V, Barulli MR, et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. The journal of nutrition, health & aging. 2014;19(3):313-328. doi:10.1007/s12603-014-0563-8.
- Eskelinen MH, Kivipelto M. Caffeine as a Protective Factor in Dementia and Alzheimers Disease. Journal of Alzheimers Disease. 2010;20(s1). doi:10.3233/jad-2010-1404.
- Chiu GS, Chatterjee D, Darmody PT, et al. Hypoxia/Reoxygenation Impairs Memory Formation via Adenosine-Dependent Activation of Caspase 1. Journal of Neuroscience. 2012;32(40):13945-13955. doi:10.1523/jneurosci.0704-12.2012.
- Feldman EJ. Gastric Acid and Gastrin Response to Decaffeinated Coffee and a Peptone Meal. JAMA: The Journal of the American Medical Association. 1981;246(3):248. doi:10.1001/jama.1981.03320030040027.
- Deventer GV, Kamemoto E, Kuznicki JT, Heckert DC, Schulte MC. Lower esophageal sphincter pressure, acid secretion, and blood gastrin after coffee consumption. Digestive Diseases and Sciences. 1992;37(4):558-569. doi:10.1007/bf01307580.
- P. J. Boekema, M. Samsom, G. P. Van Be. Coffee and Gastrointestinal Function: Facts and Fiction: A Review. Scandinavian Journal of Gastroenterology. 1999;34(230):35-39. doi:10.1080/003655299750025525.
- Liszt KI, Ley JP, Lieder B, et al. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proceedings of the National Academy of Sciences. 2017;114(30). doi:10.1073/pnas.1703728114.
- Russell RM. Gastric hypochlorhydria and achlorhydria in older adults. JAMA: The Journal of the American Medical Association. 1997;278(20):1659-1660. doi:10.1001/jama.278.20.1659.
by Dr. Ben Reebs | Jun 26, 2018 | Diet, Digestion, Health, Nutrition
There’s an old adage that while chiropractic doctors specialize in the spine, naturopathic doctors specialize in the gut. Working with what Dr. Henri Lindlahr, M.D., calls “nature’s laws” and grounded in the natural sciences, here are what I call 8 Secrets to Biohacking Your Gut, and they all involve the letter ‘P.’
1. Purification. Another name for purification is detoxification. There’s an old word for toxicity in the blood, toxemia, which according to Henri Lindlahr, M.D., one of the founders of naturopathic medicine, is caused by the violations of nature’s laws, and is equivalent with disease. (1) In this article, we may gloss over some of these laws, but if you want to learn more about them, check out The Naturopathic Medicine Institute.
Toxemia, aka accumulated “waste matter, morbid materials, and poisons,” must be removed by the organs of elimination, known as emunctories, lest their unchecked accumulation of toxicity lead to various manifestations of chronic disease. According to traditional naturopathic medicine, the five main emunctories are:
- Liver
- Gastrointestinal tract
- Genitourinary tract
- Lungs
- Skin
According to traditional naturopathy, toxemia can be primarily reduced via sweat (skin), solid waste (intestines), liquid waste (kidney and urinary bladder), and gaseous waste (lungs). Interestingly, one feature these five emunctories share in common is ample epithelial tissue, which in part serves a defense function immunologically. (2) In the skin, epithelium connects via ducts to sweat glands, a type of exocrine gland which can remove pthalates, BPA, and even toxic metals from the body.
Biohack 1: Take a 40 minute infrared sauna, followed by a cold shower, at least once a week. An interesting aside: Did you know there’s a longitudinal study showing that there’s a significant association between sauna bathing and the reduction of cardiovascular disease and all-cause mortality. (3)
2. Pura Vida. This is the opposite of la vida loca, which induces stress. We know the expression of pura vida as the law of the land in Costa Rica, but at it’s core it really means living a pure life by reducing one’s exposure, as much as possible, to toxic substances, environments, and even thoughts. And yes, this means getting rid of processed sugar and industrial vegetable oils, because of the inflammatory byproducts they produce in our bodies. Because of epigenetics, as expounded upon by the likes of molecular biologist Bruce Lipton, we now know that we literally are what we eat, breathe, and think, and of course, as we follow food chains, we are what we eat ate, too.
Pura vida speaks for itself, but for illustrative purposes I’d like to briefly talk about the effects of stress on the gut. We have microvilli which comprise the brush border and extend into the lumen of our small intestine, responsible for nutrient absorption from our food breakdown. (4) Sloughed every seven days, these microvilli contain arteriovenous (AV) connections which provide necessary blood supply when closed, but in times of stress, the hormones epinephrine and norepinephrine open the AV connections and the microvilli lose their blood supply as blood is shunted away from the gut (think fight or flight). As a result, the microvilli cannot survive and lose their absorptive surface, temporarily inducing malabsorption. This is particularly pronounced after, for example, a severe stress-inducing trauma, such as a car accident, as it may take two or three days for the dead microvilli to slough and fully regenerate. It can be said then that chronic stress will induce chronic malabsorption and/or malnutrition.
We all know about “rest and digest,” which occurs when the parasympathetic nervous system is activated and we are not pumping out cortisol and adrenaline into our bloodstreams. It is just this relaxing state that we need to cultivate in order for pura vida to truly take hold in our lives, so that our digestion and nutrient absorption is optimized.
Biohack 2: When you’re feeling particularly toxic or maybe you’ve binged on that pizza and beer that you’d been craving, or maybe you’re traveling for business and can’t help but eat less nutrient-dense food along the way, keep some activated charcoal or digestive enzymes on hand.
3. Probiotics. 70% of our immune cells reside in the gut (5), and the highest density all-natural, bacterial ecosystem in the world is inhabited by our 100-trilliion celled gut microbiome. Our gut bacteria ferment fiber or collagen protein in the colon, producing short-chain fatty acids (SCFA), which are the main source of energy for superficial colonic cells. The most common (and famous) SCFA is butryic acid, which densely resides in grass-fed butter, such as Kerrygold.
Studies have shown that glucose tolerance is affected by our gut bacteria independent of weight. (6,7) And unhealthy bacteria can cause leaky gut, which has been linked to type 1 DM, IBD, celiac disease, MS, and even asthma; more common conditions linked to an unhealthy microbiome include acne, rosacea, stomachaches, headaches, and fatigue. (8,9,10)
It’s well established that allergies and asthma are illnesses most likely caused by diminished gut function and a compromised microbiome. (11) Oh, and your gut microbiota make vitamin B12 (12), an essential nutrient for making red blood cells, proper neurological function, and DNA synthesis. And 75% of your vitamin K is produced in the microbiome, which helps our blood clot and can keep us from bleeding excessively.
When talking dosage of commercial probiotics, the number of live organisms are known as “colony forming units,” or CFU’s. In most people, 5 to 10 billion viable CFU’s of L. acidophilus or B. bifidum cells daily will suffice. (Pizzorno, Textbook of Natural Medicine – 13)
Biohack 3: Take a probiotic daily, and eat fermented, probiotic-rich foods.
4. Prebiotics. Prebiotics are nondigestible food ingredients that help promote beneficial intestinal microbiomic growth, in particular fiber compounds. Like other high-fiber foods, prebiotic substances pass through the upper GI, remaining undigested until they arrive in the colon. Prebiotics are rich in foods such as garlic and onions, Jerusalem artichokes, jicama, chicory root, and even dandelion greens. In the colon, prebiotic compounds are fermented microbiomically.
The most famous type of fiber prebiotic are oligosaccharides, but when researchers refer to fiber, they also mean fructo-oligosaccharides, polysaccharides, and even inulin. Some carbs rich in prebiotics include sweet potatoes, carrots (I prefer the non-orange ones, which have a lower glycemic load, such as polyphenol purple! We’ll talk more about the power of purple soon!), squash, and asparagus. Then, there are also the resistant starches, so named because they are resistant to digestion, which further promote fermentation and help produce SCFAs like butyrate. Some resistant starches include banana flour, plaintain flour, and raw potato starch.
Biohack 4: Eat prebiotic-rich foods, such as those listed above.
5. Purple Polyphenols. Many plants contain naturally-occurring polyphenolic compounds: fruits, veggies, coffee, tea, and even
wine. But only about 10% of polyphenols are absorbed in the small intestine, while the rest end up in the colon to be degraded to metabolic byproducts by our gut bacteria (14). Research shows a symbiotic relationship between polyphenols and our gut microbiome, making a plant-rich diet even more important. (15) Polyphenols can even act prebiotically, to increase
Lactobacillus and Bifidobacteria. While dark leafy greens are perhaps the most polyphenolic, other polyphenol-rich foods include purple foods such as Concord grapes, black mission figs, prunes, plums, blueberries, and blackberries, as well as coffee and chocolate, and some spices. Oh, and polyphenols increase the presence of good bacteria such as Bacteroidetes, as opposed to the more so-called “bad” bacteria, such as Firmicutes. (16)
Biohack 5: Eat purple polyphenols, such as those listed above!
6. Proline and lysine. Did you know that in the lumen (inner part or tube) of your gut, the amino acids proline and lysine are hydroxylated (a fancy chemical word for the addition of an -OH group to a molecule), with the help of the cofactor Vitamin C, to make collagen?! (17) Pretty amazing, right? It means these nutrients are essential for gut tissue regeneration, which is occurring 24/7. Other nutrients required include L-glutamine and butyric acid.
Oh, and a couple of excellent demulcent herbs that aid in gut healing are slippery elm (Ulmus rubra), deglycyrrhizinated licorice (Glycyrrhiza glabra or DGL), and marshmallow root (Althaea officinalis).
Another interesting tidbit: Vitamin C is a strong antioxidant, particularly in lowering antioxidant stress in the gut. (18) Apparently Eskimos got plenty of proline and lysine, as seal and whale contain high amounts, but we should probably hold off on eating them.
Biohack 6: Eat plenty of seaweed (an incredibly rich source of proline and lysine).
7. pH (or Proper Stomach Acid). It is essential that our gut is maintained within a highly acidic, proper pH range of 1.5 (fasting) to 3.5 (full stomach of food). Did you know that over 90% of our endogenous serotonin is made in our gut, indicating that “gut feelings” are no joke. (19) Actually, the serotonin made in the brain is a slightly different isomer than the serotonin made in the enteric nervous system, though serotonin influencing drugs, such as SSRI’s, can impact gut function as well. The gut-brain axis oversees everything from satiety, food intake, and glucose regulation, to insulin secretion and sensitivity, and bone metabolism. (20)
Biohack 7: Because studies have shown that stomach acid decreases with age, some natural means to stimulate the production of stomach acid, thereby improving fat breakdown and protein digestion, include betaine HCl and digestive bitters.
8. Purpose and the Solar Plexus. Okay, so here’s the woo-woo biohack. Did you know that according to the Tibetans, the solar
plexus chakra is where fire of the will in the individual is said to be localized? Interestingly, this is also where the fires of digestion roar. So, it can be said that being aligned with our life purpose will also optimize our gastrointestinal gusto. I know it’s kind of a stretch, for which there is no randomized controlled trial, but your gut’s stretch receptors will thank you. 🙂
Biohack 8: Deep belly breathing, regularly, on 4 to 8 counts at a time, can not only stimulate the will to action, but the fires of digestion.
Recapping 8 Gut Biohacks
So, to recount the 8 P’s for biohacking the gut: Purify, live Pura Vida, eat a probiotic-, prebiotic-, polyphenol-, and proline- and lysine-rich diet, maintain proper pH or stomach acid, and find and live your life purpose, thereby firing your solar plexus on all cylinders. And make it #naturopathic.
By the way, consult your doctor first if you are considering trying any of these therapies. In no way does this blog consist of medical advice.
Resources:
1. Lindlahr, Henry 1862-1924., “Nature cure: philosophy and practice based on the unity of disease and cure” (1922). Naturopathic Medicine Historical Collection.
2. Janeway C. Immunobiology: the immune system in health and disease. London: Harcourt Brace & Company; 1999.
3. Laukkanen T, Khan H, Zaccardi F, Laukkanen JA. Association Between Sauna Bathing and Fatal Cardiovascular and All-Cause Mortality Events. JAMA Internal Medicine. 2015;175(4):542.
4. Tortora GJ, Derrickson B. Principles of anatomy and physiology. New York: Wiley; 2006.
5. Vighi, G., Marcucci, F., Sensi, L., Di Cara, G. and Frati, F. (2008), Allergy and the gastrointestinal system. Clinical & Experimental Immunology, 153: 3–6.
6. Musso G, Gambino R, Cassader M. Obesity, Diabetes, and Gut Microbiota: The hygiene hypothesis expanded? Diabetes Care. 2010;33(10):2277-2284.
7. gshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with various glucose tolerance. Endocrine Abstracts. 2016.
8. Campbell AW. Autoimmunity and the Gut. Autoimmune Diseases. 2014;2014:152428.
9. Gonzalez A, Hyde E, Sangwan N, Gilbert JA, Viirre E, Knight R. 2016. Migraines are correlated with higher levels of nitrate-, nitrite-, and nitric oxide-reducing oral microbes in the American Gut Project Cohort. mSystems 1(5):e00105-16.
10. Mosca A, Leclerc M and Hugot JP (2016) Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front. Microbiol. 7:455.
11. Riiser A. The human microbiome, asthma, and allergy. Allergy, Asthma, and Clinical Immunology : Official Journal of the Canadian Society of Allergy and Clinical Immunology. 2015;11:35.
12. Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a modulator of gut microbial ecology. Cell metabolism. 2014;20(5):769-778.
13. Pizzorno JE, Murray MT. Textbook of natural medicine. St. Louis, MO: Elsevier/Churchill Livingstone; 2013.
14. Tomás-Barberán F. Interaction of polyphenols with gut microbiota: Role in human health. Planta Medica. 2014;80(16).
15. Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition. 2015;54(3):325-341.
16. Rastmanesh R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions. 2011;189(1-2):1-8.
17. Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR. Regulation of collagen synthesis by ascorbic acid. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(5):2879-2882.
18. Alzoghaibi MA. Concepts of oxidative stress and antioxidant defense in Crohn’s disease. World Journal of Gastroenterology : WJG. 2013;19(39):6540-6547.
19. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-276.
20. Heijboer, A. C., Pijl, H., Van den Hoek, A. M., Havekes, L. M., Romijn, J. A. and Corssmit, E. P. M. (2006), Gut–Brain Axis: Regulation of Glucose Metabolism. Journal of Neuroendocrinology, 18: 883–894.
What do you think? I’d love to hear your thoughts!
by Dr. Ben Reebs | Jun 16, 2018 | Chronic Disease, Health
There is a myth that GERD, popularly known as heartburn, is due to having too much stomach acid, a condition known as hyperchlorhydria. But there is ample research (1,2,3,4) demonstrating the opposite is true, that is, that GERD is most likely due to not having enough stomach acid.
How It Works
Lower esophageal sphincter (LES) tone is reduced and so the LES relaxes when there is not enough acid in the stomach, a condition known as hypochlorhydria. Hence, the sphincter does not close properly and acidic contents are much more likely to reflux upward from the upper GI into the esophagus. Interestingly, the hypochlorhydria theory of GERD, proponents of which include Jonathan Wright, M.D., author of Why Stomach Acid is Good for You (2001), has been called an alternative medicine theory, when it’s actually grounded in basic med school physiology.
Turn Off the Symptom Rather than Treat the Cause
To treat GERD, modern medicine prescribes drugs first-line in the on-average 7-minute visit: antacids like Tums which neutralize stomach acid; and H2 blockers like Tagamet and proton pump inhibitors (PPI’s) like Prilosec, that temporarily turn off our stomach’s ability to produce stomach acid. But turning off stomach acid in response to gastric reflux is the equivalent of an auto mechanic pulling the automotive fuse for your sudden dashboard engine warning light, or worse yet, simply cutting the wiring which carries the signal, because it is bothersome and annoying, rather than troubleshooting to find the underlying cause.
Common sense tells us there will be downstream consequences for the life of any car (in medicine, these are known as sequelae) if any engine light warning goes unheeded for long enough. Stomach pH varies from roughly 1.5 (more acidic: normal fasting) to 3.5 (less acidic: with food), and proper pH is essential to breaking down proteins as well as a healthy microbiome (5).
Our Addiction to GERD Drugs Causing More Chronic Disease
Our use of drugs to treat GERD is supposed to be short-lived (for example, an initial course of PPI’s is supposed to last no more than 8 weeks), but millions of people end up dependent on these drugs for years, and even decades. And weaning off these drugs, particularly PPI’s, can be challenging. There is an ample body of research now linking chronic PPI use to osteoporosis, increased infection risk, magnesium deficiency, and depression and dementia. But PPI’s are blockbuster drugs, as the market is projected to generate $4.34 billion by 2025.
On a yearly basis:
- More than 80 million experience GERD symptoms in the U.S. alone.
- 25 million suffer from heartburn daily in the U.S. alone.
- 60 million suffer from heartburn monthly in the U.S. alone.
Also, there is evidence that the body upregulates stomach acid production when it is blocked, because the body is smart enough to know that without proper stomach acid it will essentially starve.
Too Much Stomach Acid Actually A Rare Condition
Having too much stomach acid, a condition known as hyperchlorhydria, is actually rare, seen in cases such as Zollinger-Ellison Syndrome (ZES), where tumors in your pancreas produce excessive amounts of gastrin, which leads to excessive stomach acid and thereby causes stomach ulcers. HCl production declines significantly with age, and GERD onset presents on average at age 50, another fact suggesting that GERD is due to hypochlohydria. Though GERD can be due to a number of causes, such as stress, hiatal hernia, or ZES, it is most likely that it is due to not having enough stomach acid.
Treat the Whole Person, Treat the Underlying Cause, and Stimulate the Vital Force, to Help Improve GERD
In naturopathic medicine, we treat the whole person and usually that begins with diet and lifestyle, but people need to be met where they are at. The innate healing mechanism of the body needs to be stimulated and obstacles to cure need to be eliminated for symptoms to improve.
For people who have symptoms of GERD, it is important to determine if they are hypochlorhydric and if so, then to stimulate the production of stomach acid, so that not only can the lower esophageal sphincter maintain proper tone so that it remains closed when it’s supposed to, but so that healthy flora are maintained in the gut and digestion and absorption is optimized. Of course a person must consult their doctor before engaging in any medical treatment.
Four natural ways to stimulate the production of stomach acid include:
- Apple cider vinegar (ACV)
- Digestive bitters
- Betaine HCl
- Deglycerrhizinated licorice (DGL).
What do you think? I’d love to hear your thoughts!
Also, here are three excellent articles I greatly appreciated on GERD and hypochlorhydria:
Sources:
- Ayazi S, Leers, JM, Oezcelik A, Abate E, et al. Measurement of gastric pH in ambulatory esophageal pH monitoring. Surg Endosc. 2009 Sep;23(9):1968-73.
- Giles GR, Humphries C, Mason C, Clark G, et al. Effect of pH changes on the cardiac sphincter. Gut 1969;10:852-856.
- Kaye MD. On the relationship between gastric pH and pressure in the normal human lower oesophageal sphincter. Gut 1979;20:59-63.
- Giles GR, Mason MC, Humphries C, and Clark CG. Action of gastrin on the lower oesophageal sphincter in man. Gut 1969;10:730-734.
- Shreiner AB, Kao JY, and Young BV. The gut microbiome in health and disease. Curr Opin Gastroenterol. 2015 Jan;31(1):69-75.